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A b s t r a c t .  Colliding beams experiments in High Energy Physics rely on solid s tate  detectors 
to track the flight paths of charged elementary particles near their primary point of interaction. 
Reconstructing tracks in this region requires, per collision, a parti t ioning of up to 10 a highly corre- 
la ted observations into ~n u n s o w n  number of tracks. We report  on the successful implementat ion 
of a combinatorial track finding algorithm to solve this pa t te rn  recognition problem in the con- 
text of the ALEPH experiment at CERN. Central to the implementat ion is a S-dimensional axial 
assignment model (AP5) encompassing noise and inefficiencies of the detector, whose weights of 
assignments are obtained by mesns  of an extended Kalman filter. A preprocessing step, involving 
the clustering and geometric partit ioning of the observations, ensures reasonable bounds on the 
size of the problems, which are solved using a branch & bound a]gorlthm with LP relaxation. 
Convergence is reached within one second of CPU time on a RISC workstation in average. 

K e y w o r d s :  Integer Programming, Multiple-Target Tracking, Extended Kalman Filtering, Parti- 
cle Physics, Pa t te rn  Recognition 

1. I n t r o d u c t i o n  

A large part of the research activities currently taking place in High Energy Physics 
is devoted to the study of fundamental interactions produced by colliding beams 
of elementary particles. Electron-positron colliders, such as the LEP storage ring 
located at the European Laboratory for High Energy Physics (CERN) in Geneva, 
operate at the resonance of the Z ° gauge boson, which decays into an a priori 
unknown product. The product interactions, or events, are viewed and analyzed 
via the means of large composite detectors generally made of concentric cylindrical 
shells of electronic arrays occupying a volume of a few thousand cubic meters. 
The outer shells are made of calorimeters, which are designed to absorb incoming 
particles and measure their deposited energy, while the inner part is composed of 
ionization chambers and solid-state devices whose purpose is to record point-like 
observations on the flight path, or track, of every charged particle produced by the 
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Z ° decay. Tracking is defined as the reconstruction of the flight path of particles 
from space-point data  produced in this region. 

A particle is identified only once its track has been reconstructed. The recon- 
structed tracks are used to determine the topology of the event, and in particular 
to calculate the exact location of the point of origin, or vertex, of each particle. 
Most product particles have their origin at the primary point of interaction (the 
primary vertex), but others are themselves the product of mother particles, and 
their vertex is located elsewhere in the detection volume. Measuring the vertices of 
particles with precision is of prime importance to the experimental analysis of fun- 
damental physics interactions. As the precision of tracking has a direct bearing on 
this analysis, it represents a crucial step in the processing of High Energy Physics 
data. 

2. C o n v e n t i o n a l  T rack ing  A l g o r i t h m s  

The problem defined above belongs to the class of Multiple-Target Tracking prob- 
lems (MTT) which are have been studied extensively in the field of information 
processing. MTT instances arising from surveillance applications and computer 
imaging are routinely being solved in near real-time conditions with the help of gen- 
eral purpose algorithms, such as the Multiple Hypothesis Tracking (MHT) method, 
originally developed by Reid [26], and the Joint Probabilistic Data Association Fil- 
ters (JPDAF) by Bar-Shalom et al., [2]. These methods rely on the ordering of 
observations in a scan sequence, and proceed by constructing the full tree of track 
hypotheses, with each branch representing the association of data  in adjacent, or 
near-adjacent, seans. These methods are suboptimal in the sense that  they rely 
on heuristics to limit the number of branches in the tree, or to normalize the hy- 
potheses at every scan. Several variants of these methods have been proposed in 
the literature (for a review of mainstream MTT algorithms, see Blaekmann [4] for 
instance). 

The High Energy Tracking problem differs from the mainstream MTT applica- 
tions in that,  due to the very short lifetime of the product particles (a few nanosec- 
onds) and to the a priori unknown event topology, it may be difficult to define a 
reasonable scan sequence if the local density of observations is large. This prohibits, 
at least locally, the use of conventional sequential methods. By the same token, data  
are available all at once, which renders a global treatment of information (or batch 
processing) an interesting alternative to the scan-by-scan approach, an idea which 
is developed in this paper. Combinatorial algorithms to solve the generalized MTT 
data association problem have been proposed by Poore [22], and Poore and Rijavec 
[23], [24]. In the latter, the MTT problem is modeled as a multi-dimensional assign- 
ment problem which is solved by Lagrangian relaxation. For a complete coverage of 
multi-dimensional assignment problems, see Pardalos, Pitsoulis and Resende [17], 
and Pardalos and Wolkowicz [18]. 

Attempts have already been made to solve the High-Energy Physies MTT prob- 
lem using batch processing methods (albeit adaptive ones). Peterson [21], Stimpfl 
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and Gurrido [28], among others, proposed a Hopfield-type neural network approach, 
while Gyulassi and Harlander [12] used a generalization of the Radon transform to 
derive an elastic tracking algorithm relying on a lexicographic search for deformable 
"template" tracks. A hybrid algorithm based on simulated annealing and making 
use of a mean-field approximation on the state of indicator variables was developed 
by Peterson and Anderson [20]. Practical implementation of these methods have of- 
ten revealed performances equal to simpler nearest-neighbour search, "road-finding" 
and tree algorithms [8], which has hampered somewhat their more widespread use 
in running experiments to this day. This situation may change with the next gen- 
eration of particle colliders and detectors, and the far more complex instances of 
tracking problems associated with them. 

While the nearest-neighbour algorithms are efficient in regions where tracks are 
well separated, they are often used across the entire detection region regardless of 
the local density of observations which altogether tends to limit their effectiveness. 
The following section describes the tracking environment of the ALEPH High En- 
ergy Physics experiment at CERN, and the conventional algorithms used for data  
reconstruction there. 

3. P r o b l e m  D e s c r i p t i o n  

ALEPH is one of the four detectors located on the Large Electron-Positron Col- 
lider (LEP) at CERN. Its principles of operations are fully described in Decamp 
e~. al. [11], and a schematic view of its cylindrical tracking components is given 
in Figure la.  The assembly is centered along the beam ands and about  the beam 
spot, the region where the two beams collide. The tracking environment differs 
substantially from one component to the next: the outer shell is a gas-filled Time 
Projection Chamber (TPC) operating on the principle of measuring the drift dis- 
tance of ionization. The chamber produces three-dimensional points which are used 
for tracking. The Inner Tracking Chamber (ITC) is u proportional wire drift chum- 
ber used mainly for triggering purpose, which doubles as u tracking device. The 
uncertainty of observations in the direction of the beam axis are too large to be 
used in practice, so two-dimensional observations, distributed over nine layers, are 
available for tracking in this region. 

The innermost device is a solid-state silicon strip vertex detector (VDET),  made 
of two layers of overlapping silicon wafers with an inlay of orthogonal aluminum 
strips (Figure lb).  As a charged particle traverses a wafer, the ionization charge 
it produces in the silicon is picked up by the nearest pair of orthogonal strips 
(Figure ld).  The signals induced in the strips are used to identify the orthogonal 
pair, from which a three-dimensional point (knowing the position of the strips on 
the wafer) tun be reconstructed. This device can be pictured us four copies ofu one- 
dimensional detector embedded in u three-dimensional framework described by an 
orthogonul local coordinate system, the "z" direction used for observations which 
lie perpendicular to the beam axis, and p -  ~ for observations which lie parallel to 
it. 
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Figure 1. ALEPH tracking chambers (a). The VDET is made of two concentric layers of silicon 
wafers (b) centered at the origin. Wafer overlap is shown in (c). A VDET module is a pair of 
wafers (d) which triggers two crthogonal signals when a charged particle traverses it (scale in cm) 

All three devices are immersed in a magnetic field of constant magnitude along 
the beam axis, which constrains charged particles to follow a helical path about  
that  axis. The energy of the particle is proportional to the radius of curvature of 
its track. 

3.1. A l g o r i t h m  I m p l e m e n t a t i o n  I s sues  

The tracking detectors operate on very different scales and resolutions. A charged 
particle easily travels more than a meter in the T P C  and generates up to twenty-one 
space-points with a resolution of 180/~m. By contrast, the same particle generates 
only two space-points in the vertex detector, but with a resolution which is better 
by an order of magnitude. Unless a particle traverses an overlap region of the vertex 
detector, the latter does not produce sufficient information by itself to reconstruct a 
helix. Track reconstruction in the important  vertex detector region relies therefore 
entirely on outer tracking. 

There are also major differences in the density of observations between different 
regions: most tracks have their origin within the volume bounded by the vertex 
detector, and are therefore well separated by the time they enter the TP C region. 
Conversely, the density of information is the greatest in the vertex detector, where 
local track quality matters the most. 

A third difficulty inherent to High Energy Physics tracking is the presence of 
non-negligible local deviations from the ideal helical flight path of particles due to 
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interactions of the latter with matter present in the detector. Most noticeable are 
rn~Hiple sca~ering effects, described in detail in Scott [27]. Only approximate mod- 
els have been proposed to calculate the deflection angle due to multiple scattering, 
which may be viewed as a local change of state in the helical model. This effect 
is lessened for highly energetic tracks. The implementation of an seamless track- 
ing algorithm (global or sequential) applicable to all regions at once is therefore 
difficult. 

3.2. Track R e c o n s t r u c t i o n  

Track reconstruction is first performed in the outer region by means of sequential 
road-finding methods, the implementation of which is described in Comas et al. 
[10]. In order to limit multiple scattering effects, it proceeds by identifying tracks 
segments with the smallest curvature, and therefore the highest energy, which are 
fitted by least-square methods and extrapolated inwards in the direction of the 
vertex detector. Given the good track separation in these regions, this method 
performs generally quite well locally [7]. 

When it comes to actually associate outer tracks with the more accurate vertex 
detector observations, the step above should only be viewed as a partitioning of 
outer observations into partial tracks. In order to calculate track parameters ac- 
curately, multiple scattering effects at the detector boundaries and in the silicon 
wafers of the vertex detector need to be taken into account. A more accurate fitting 
procedure, based on an extended Kalman filter, is activated for this purpose. Its 
implementation is described in the next section, and the prime advantage of the 
procedure is to account for low-angle multiple scattering effects, a model of which 
is directly introduced in the covariance matrix of the process noise. 

Figure 2 shows two outer tracks, their 5-standard deviation extrapolation area 
represented by an elliptical conic road around the track, covering a number of or- 
thogonal vertex detector observations to which the tracks can be assigned. If the 
optimality criteria for application of a Kalman filter (i.e., a linear transport equa- 
tion, normal distribution of measurement and process noise, mutual independence 
of time series) were truly satisfied, then an optimal association of observations could 
be made sequentially based on some arbitrary track ordering, a principle relied upon 
entirely in the ALEPH tracking software up to now. 

3.3. K a l m a n  F i l te r  I m p l e m e n t a t i o n  

Extended Kalman filtering methods have been described extensively in the liter- 
ature (see Catlln [9] for instance), and only a brief description of implementation 
details in the specific context of this work is given here (for a full description, see 
Comas et al. [10]). A damped regular helix coiling around the beam axis models 
the particle path in the detector medium. The state equation is represented by the 
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Figure 2. Two par t ia l  tracks extrapola ted from the outer  region into the vertex detector,  together  
with  their  five s tandard-deviat ion extrapolat ion errors. A possible assignment of observations is 
indicated by matching indices.All observations are correlated in terms of track assignment 

five-vector 
= T 

with parameters representing the zy and z coordinates of the observations on the 
vertex detector wafer, the angle of the xV projection of the track with respect to 
the x-axis, the angle of incidence, and the curvature of the track respectively. The 
radius z is the Euclidean distance between the origin and a point on the projection 
of the helix in the xy-plane. The transport equation ~(~k)  of the state vector £k 
is given in the Appendix. It is nonlinear (hence the extended approach), and the 
filtered estimator (or more precisely the conditional mean) of the Kalman filter can 
no longer be calculated analytically. Because of computational constraints, only 
a first-order Taylor series expansion of the transformation is used. The system 
equation 

contains the process noise ~k modeling multiple scattering effects described earlier. 
The measurement equation is given by 

~k = H~k + rk 

where ~'~ is the measurement error vector of the actual observations mk= (uk, zk) T. 
The transport function for the measurement, H, is in our case a matrix of constants 

( 1 0 0 0 0 )  
H :  0 1 0 0 0  
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The covariance matrix Q of the process noise contains a description of multiple 
scattering, and is obtained by solving the differential equation 

dQ ( 0  1 )  I 0  0 ) I 0  0 ) d ®  2 
dl = 0 0 .Q(1)+Q(1) .  1 0 + 0 1 " dl (1) 

over a set of boundary conditions determined by the type of material present in 
the path segment of length 1. 0 represents the smearing angle due to multiple 
scattering. 

Assuming that individual contributions to the joint probability distribution func- 
tion of the measurements are Oaussian, the normalized measured residuals squared 
R2(i) = r-~(i)S-t~(i)  follow a X~ distribution, where 6"(i) are the measurement 
residuals, S is their eovarianee matrix, and M is the number of observations [2]. 
The recursive expression 

(2) 

follows a X~,M distribution, and is used to determine the goodness of fit of the 
observations to the helix model. 

3.4. Mot iva t i ons  for a Global  A p p r o a c h  

Several problems exist with the sequential assignments of vertex detector obser- 
vations discussed earlier. The nonlinearity of the transport equations induce nu- 
merical instabilities due to the application of a nonlinear transformation to the 
predicted estimators of the state vector. A recursively iterated extended Kalman 
filter step (i.e., in flrst-order, a linearization of the filtered estimates obtained by 
recomputing the 3acobian of the transport equation at the smoothed estimates). 
has been implemented, but only at great expenses of compute-time, and only with 
mitigated results [10]. 

A more serious obstacle is the correlations of observations in terms of track assign- 
ment in the outer region, which are not taken into account by a nearest-neighbour 
assignment rule. Even relatively minor pattern recognition errors there may thus 
significantly affect the quality of the track estimators in the much more confined 
vertex detector region, by displacing, or simply enlarging, the extrapolation cone 
of the outer tracks to cover neighbour observations. 

While measurement noise in the vertex detector is nearly Gaussian, the process 
noise which provides the model for multiple scattering has a Gaussian core but 
with sensibly heavier tails. The extended Kalman filter estimate thus provides the 
best linear estimator for the filtered state vector, and in this sense, the procedure is 
suboptimal. The purpose of the work described in the next section is to reduce the 
impact of these errors by solving to optimality the combinatorial assignment prob- 
lem consisting of finding the optimal match of orthogonal pairs of vertex detector 
observations to outer tracks. 
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4. C o m b i n a t o r i a l  F o r m u l a t i o n  

4.1. T h e  F i v e - d i m e n s i o n a l  A s s i g n m e n t  M o d e l  

4.1.1. VDET Inpu~ 

As seen in Figure 2, the relatively large gating region of outer tracks cover generally 
more than a unique combination of vertex detector observations in each layer. The 
ambiguity contained in this assignment provides the incentive for applying combi- 
natorial optimization to improve the matching and the overall tracking quality. 

The intersection of the cones with the wafer planes, together with the observations 
they cover, define the inputs to a global assignment. In this formulation, a given 
track may be assigned no observations (when it misses the detector altogether) and 
up to eight when its extrapolation footprint covers overlap regions in the two layers 
of the detector. Referring again to Figure 2, the set of input tracks is indexed by 
i, while the observation candidates in different views and layers are represented by 
the indices j ,  k, l and m respectively. 

A natural five-dimensional assignment formulation for this problem is achieved by 
making sure that  outer tracks are matched to ezactly one vertex detector observa- 
tion per layer and per view. If  a track traverse an overlap region, it may effectively 
be assigned to more than one observation in the same layer and in the same view. 
We therefore merge observations which lie on the overlap region of the detector, in 
effect increasing the number of logical observations by all possible fused pairs of 
observations that lie in the same view and the same layer, but on different wafers, 
which ioge~her may be assigned to a track. 
Noise and inefficiencies of the detector are non-negllgible, and contribute to the 

offset from a perfect 5-dimensional assignment. We introduce therefore a "noise" 
track with index zero to account for spurious observations. Likewise, "null" ob- 
servations, in each layer and in each view, are introduced to provide a matching 
to outer tracks to which no observations can possibly be assigned. In this artifi- 
cial context, we will refer to observations from now on as "hits", whether real or 
artificial. 

Track assignment put aside, there is no correlation between orthogonal observa- 
tions which lie on the same layer, so the observations form pairwise-disjoint sets 
with respect to layers and views. The amplitude of individual observations, how- 
ever, referred to as their pulse-heioht is measured and allows to determine whether 
they may be used by one track (labeled from now on "single hits") or more tracks 
( "undecided hits"). 

We define the input to our problem as consisting of a set of (hi + 1) outer tracks, 
together with (nj + 1) p -  ~b hits and (nk + 1) z hits on the outer layer, and (nz + 1) 
p - ~ hits and (n,,, + 1) z hits on the innerlayer.  These sets are indexed as :follows 
(see Figure2): 

i e { 0 , . . . ,  
j ~ {0, . . . ,  n~,al,,i,~gz,,..., n ~ a z , . . . ,  uS} 
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+ {o , . . . ,  n,,,+,.,+.=z,.,.,..+z,,..., n,,,.,.+,..., n+} (3) 
l e { 0 , . . . ,  nz,,,+,,i,,++,,..., nz,,=z,..., n+} 

m E {0, . . . ,  nm, eal,single,..., nrnrea/, • •., nm} 

If U~, UW+, LVI and LWm represent two orthogonal pairs of hits on the outer 
and lower layers of the vertex detector respectively, the decision variable 

1 if T~ is assigned to { UVj, UWk, LV~, LW,~} 
Xijklrn = 0 otherwise 

is defined for all outer tracks 2~. 
We found it difficult to reduced the number of dimensions in this assignment. A 

strong correlation between orthogonal hits for a fixed layer is provided by the outer 
tracks: it would seem unwieldy to assign a single one-dimensional observation to a 
track in one view, only to find out that no observation is present in the other view. 
Processing all observations in the layer in one sweep ensures that  only meaningful 
cross-hit patterns are retained. In doing so, however, we run the risk of discarding 
meaningful patterns which are incomplete because of detector inefficiencies. 

To identify bona fide incomplete pattern would in turn require an elaborate 
parametrization of the local inefficiencies, requiring more precise data  reconstruc- 
tion studies than can possibly be made in the ALEPH context [5]. A workaround to 
this problem is to extend the search for reasonable patterns into the other layer of 
the detector. With an expected number of four observations per track, it becomes 
easier to provide ad-hoe procedures to reject uninteresting pat tern candidates at 
the outset. 

Another advantage of processing all vertex detector information at once, as op- 
posed to decomposing the problem up into assignment problems of smaller dimen- 
sions, lies in the possibility to exploit the excellent angular resolution provided by 
a pair of cross-hits reconstructed in different layers: recalling that  an outer track 
travels a much larger distance in the outer outer region than in the vertex re- 
gion, the angle of incidence of the tracks with respect to the vertex detector wafers 
provides a much better  assignment criterion with the pair of cross-hits than does 
its extrapolated position. By keeping the problem five-dimensional, we therefore 
benefit from this advantage. 

~.1.~. Objective function 

For all patterns corresponding to the decision variable ~ij~z,~, = I, we obtain a a X 2 
value from Equation 2, which we denote by Cx2 ijkl,~. A global assignment of these 
variables (i.e., a solution to the assignment problem) is represented by the vector 

= x jkz  (4) 

Writing, from now on, the multiple sum of the indices from %" up to their full 
N range (given in Equation 3) as ~-~+,j,kj,,~=~, the number of degrees of freedom for 
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that  assignment, in terms of hits and tracks is expressed as the difference between 
the total number of real hits and the number of hits assigned to the noise track, 

N 

NDOF(Tf;j,,=) = (nj..=, + nk..=, + n,..=, + n . . . . = , ) -  E xoik,.~ 
i ,k , l ,m=l  

= N,~de t  - -  N u n ~ , , d  

The total number of null hits for that  assignment is 

i=1 ~=o j=o _ 

To determine whether the hypothesis -~ijkz,,, "* = X~i~l,~ , is true, we construct the 
probability of observation 

= xlj t,,, I N , . , u )  = 

where 

S = 

Equation 6 is conditional to having observed N,~,~,,ed noise hits, and N,~,~n partial 
patterns given by Equation 5. The probabilistic interpretation of a missing hit can 
be viewed as a binomial experiment, the outcome of which depends on whether or 
not the detector records a signal when it should have done so. If  B denotes the 
binomial probability distribution function (PDF),  and E is the local efficiency of the 
detector on a given wafe~ chain, the probability of having observed N,,,,u partial 
patterns in the solution Xijkz,~ = X~j~l,~ is given by 

= Xiik , ,~ ) B(~ , I ,  NDOF( .X* i , , , . )  ) (8) 

Likewise, we can treat the occurrence of spurious hits as a Poisson process, whose 
outcome ranges from zero (no noise is observed) to the total number of observations 
in the sample (all hits are noise). If  A is the expected number of noise hits in the 
problem (which is a function of the total number of hits and of the sum of the track 
extrapolation area), then 

I=N~,n,,,¢a 
(9) 

Ar 

E CXa'ijklrtt~ijklrn' (7)  
i,j,k,l,ra=O 
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where :P is the Poisson PDF. The probability of assignment is the product of the 
last three expressions, 

The assignment vector which maximizes expression 10 corresponds to the opti- 
mal global assignment of hits to tracks. This expression, however, involves partial 
gamma functions which are themselves functions of discrete variables, and may 
not be used directly in an integer optimization formulation. We thus proceed by 
finding a linear analog to Equation 10, considering the simplified case where the 
probabilities of the zlikzm = zi*~.kz m assignments are all assumed to be independent. 
Setting a single variable with a nonzero track index to one in the full objective, and 
taking the negative logarithm of the resulting expression, produces the analog of 
the conditional probability (now a cost to be minimized) for that  pattern 

%ond,o'k,m = - log Px, NDOFvdet( , ) ( t )d t  (11) 
X2,1jh/m 

where NDOFvdet( i  ) is the number of hits assigned to i. To this expression, we add 
a penalty term 

7~,,,~ = - log B(e, INTC4e), 4) (12) 

which is weighted by the number of null hits, N~u,ij~zm, present in that  pattern 
(corresponding to the number of j, k, l, m indices equal to zero). Weights given to 
individual variables zijklm where i is a real track, are thus 

Cijklm = C c o n d , / j k l m  "-t- "TnulINnv.ll,ijklm ( 1 3 )  

We can likewise approximate the contribution of the noise track by 

= - l o g  ( 1 4 )  

Equations 13 and 14 define the linear objective function 

/V 

i , j ,k, l ,m=O 

which is to be minimized. 
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4.1.3. Constraints 

Having introduced null hits in our formulation, real tracks must always be assigned 
to some hit pattern,  regardless of its structure. This gives 

N 

zljk,ra = 1, Vi G {1 , . . . ,  ni) (16) 
j,kjl,m=O 

This constraint must be relaxed for the noise track 

N 

a <_ ~ z(o)iktm <_ b (17) 
jjk,l,rn.=O 

We merely require that the number of hits assigned to it be bounded by some 
reasonable number. 0 < a and b < njre~tq-n~realq-ntrtat+n,~rtal are two parameters 
which cart be adjusted for this purpose. 

Real hit constraints are symmetric (in terms of indices) for each layer and each 
view, and are thus explicitly written for the p - ¢ view of the outer layer (indexed 
by j )  only. Other constraints follow nsturally by permutation of indices. 

For every real hit UVj, there is an integer Mj >_ 0 indicating the number of its 
occurrences in a fused overlap hit. If that  number is non-zero, the vector Gj(Mj) 
contains the index map of the logical overlap hits (in general, one real hit may 
belong to more than one overlap pair). 

Single hits must be used exactly once. If a hit is part  of an overlap combination, 
mutual  exclusion between the hit and its overlap parent in the assignment must be 
enforced, which yields N( ) 

i~k,l,rn=O r n z l  

= 1, Vj 6 { 1 , . . . ,  njreaZ,,ingle} (18) 

Hits classified as "undecided" are subject to similar constraints. The probability 
of using these observations more than twice is negligible, given the difference in 
magnitude between true track separation and vertex detector resolution. This gives 

1 <_ zijktr, q- ~iG~mlklm <_ 2, (19) 
i,k,l,rn=O 

Vj E (njreal,single q- 1 , . . . ,  njreal) 

The overlap hits are subject to the constraints which apply to their individual 
components. No constraints have been placed on the null hits, which are used 
freely. 
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4.2. Solu t ion  St ra tegies  

4.2.1. Preprocessing 

,~.P.$. Natural Decomposition 

The maximum number of feasible solutions for the five-dimensional assignment 
model is (n + 1)! 4, where n = max(nl,nj,nk,nz, nm)is generally dominated by 
hi, the number of outer tracks which rarely exceeds 30. Tracks, however, tend 
to bunch together in subsets which are well separated, so one may successfully 
apply a partitioning to the main assignment problem in order to produce several 
logically independent subproblems of smaller sizes. The first preprocessing step 
consists therefore in checking whether any two tracks in the event belong to the 
same subcomponent. A simple argument is used in this classification: if we recall 
that the 5~, road of each track covers a certain number of candidate hit patterns 
on each layer, we represent all the tracks in the event as the nodes of a graph, 
in which any two nodes are connected by an edge of positive weight only if the 
two corresponding tracks share at least one hit amongst their lists of available 
patterns. The connected components of the graph (identified by a O(n) algorithm 
using a doubly linked list) then corresponds to so many independent subproblems. 
Coupled to this step is a verification phase to remove entirely diagonal problems, 
i.e., instances in which the set of local optimal patterns of each track is in fact 
the global optimal solution. An example of a physics event involving four logical 
components is given in Figure 3. 

4.2.3. Clustering 

A heuristic is now applied to remove from each connected component tracks with 
an extrapolation error which is much larger with respect to other competing tracks. 
These tracks may have been poorly fitted in the outer region, or may have undergone 
large angle multiple scatter. While their X 2 value provided by the Kalman filter 
may still be reasonable, either because the fit in the outer region was so poor and 
only few observations had been assigned to them there, or because their covarianee 
matrix has simply been underestimated, their removal is justified to allow a more 
balanced competition between near-optimal patterns which belong to more precisely 
defined tracks. An example of this large footprint discrepancy is given in Figure 4. 
In a second stage, removed tracks are fitted to observations left unused by the global 
assignment performed over the component they initially originated from. 

Applying proper corrections to the weights of assignment as a function of the 
extrapolation error could in principle achieve the same goal. However, this approach 
has the added advantage of reducing the component size, and allowing further 
decomposition. 

The removal is performed by first calculating edge weights for the connected 
component graph as follows: 



54 J.-F. PUSZTASZERI ET AL. 

g c h . $ 1  JP.~ . .954  &WZ:.$(;2 E'~'J: .132 *1 ' h~2 .18  ,2~047:~ ;  ~.S,/~3 ~ b , .  O~pB~$.~V 

1 

9 . ,  t$ 

[ " 

q J 
., ,~ j ~ - -  - ~ . / ~ , . ~  

? [ • 

' ~ Ill' 
..... \ 

il Ii i . \  

,~0~ ~ ~ • ~:~. ~ - 1 ~ , . ~  . . . .  ; l ~ , ~ . ,  , ,  I , , ' -  . . . . .  ~ ' ~ ' " ~ . l  

Figure 3. Full even t  before  decompos i t ion :  a t  r igh t  a r e p r e s e n t a t i o n  of  a f ron ta l  p ro j ec t i on  of  
t he  ou t e r  t racks .  Cen t e r  a n d  left windows r ep re sen t  a n o r m a l  view of  t he  ou t e r  a n d  i n n e r  layers  
o f  the  ve r t ex  de t ec to r  respect ively.  T h e  l e f tmos t  view reveals  the  p re sence  o f  four  i n d e p e n d e n t  
components, one of which much more dense than the others (lower part of the picture) 

([AI--Aj[) if ~ andT/ are connected max(A; ,Aj )  
w~j = 0 otherwise 

where Ai and Aj are the area of intersection between the detector wafer and the 
extrapolation cones of tracks ~ and ~/~ respectively, averaged over the two lay- 
ers. An iteration over the edges of the component is then performed in order of 
non-decreasing length,and an edge is removed from the graph, together with its 
predecessors, if its successor is less than haIf of its magnitude. I f  the graph has 
been disconnected in the process, the iterated procedure branches on generated 
connected subcomponents. An ordering of components is maintained as a function 
of track index membership. The procedure terminates when all edges have been 
processed. The assignment is then applied to individual components, in reverse 
order of their generation. 

Ifw~i(z) is a monotone decreasing function bounded below by f ( z )  = max{wi~}-  
x/2,  where x is the ordering index of the edges, then the clustering step is effectively 
equivalent to an ordering of tracks as a function of their errors. Applying the as- 
signment over each singleton component, the nearest-neighbour search is recovered. 



TRACKING ELEMENTARY PARTICLES 55 

• .~S4 W2 . . t 62  W$ . ,X31  ~ . 2 . l s  

• II 

t , i  N 

. ' I Ili l 
• . , I  I I ] 1  'f  

o z 1 0 ~  

t ~ .X~33S  ~ t . 171~  
~704~2~  lS :43  ~ -  c o r m  

m 

Figure 4- A enlarged view on the dense component shown in the previous figure: two tracks 
(shown by their very large elliptic footprints at left) correlate all others into forming an oversized 
component. Removal reduces the component size by half 

~.2.~. Branch ~ Bound 

Irreducible subproblems are solved by means of a branch & bound algorithm with 
linear programming relaxation. This scheme follows the conventional structure of 
commercial mixed integer programming solver, with some problem-specific steps 
implemented into the generic structure, among which the use of track momen tum 
for selecting branching variables. If, for a given active node, any two variables with 
different track indices are in competition, the variable corresponding to the track 
with the higher momentum,  and therefore the smaller extrapolat ion error, will be 
branched upon first. Because the footprint of this track is small with respect to 
others, so is the number  of pat terns  available for it. For variables all involving the 
same track index, priority is placed on pat terns  which contain two pairs of real 
cross-hits (all four hit indices are greater than zero), and, if unavailable, only one 
pair. Ordering within each subcategory is arbitrary~ and the assignment defaults 
to the null variable Xi0000 if nothing else is available. The goal of this procedure is 
to provide an early identification of pat terns  which are least likely to contribute to 
the assignment ambiguity. 

Node ordering among the list of active nodes follows a depth-first search plus 
backtracking scheme, with an arbi trary left son selected first (see, for example, 
Nemhauser 8z Wolsey [14]). 
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4.~.5. Post-optimal Processing 

Given the suboptimal nature of the procedure described so far, it is only natural  to 
investigate the physical significance of near-optimal solutions, more in an a t tempt  
to measure the stability of the optimum itself rather than in providing an analysis 
of convergence if that  optimum is not found. How a small perturbation to the 
optimal solution may in turn affect the optimal value found earlier is investigated 
for that  purpose. This perturbation is generated by permuting two patterns, one 
which is part of the optimal solution and one which is not. To render the new 
assignment feasible requires an interchange of other (and possible all) remaining 
patterns. Once this has completed, a small difference between the optimal value 
and the new objective value will indicate the presence of a potentially interesting 
near-optimal solution, while a large difference will confirm the physical quality of 
the optimal found earlier. 

The selection of an interchange pattern proceeds as follows: for each track, the 
pat tern which is closest to the optimal assignment in terms of absolute weight 
difference is selected, and the track for which this difference is minimal undergoes 
the pat tern interchange. A llst of tracks whose optimal patterns enter in conflict 
with this new assignment is created, and a greedy search for a feasible solution to 
this subproblem is performed, which defaults to a null assignment if no pat tern 
may be found for a given track. 

5. I m p l e m e n t a t i o n  

A full implementation of this algorithm has been performed in 3ULIA, the ALEPH 
reconstruction software which handles the transformation of raw detector data  into 
fully reconstructed physics events. Although ALEPH is in its sixth year of opera- 
tions and has already gathered nearly five million Z ° events, conducting an upgrade 
at such a late stage in the life of the experiment does not represent a handicap, as 
raw data, which are stored permanently, are routinely reprocessed. Improvements 
benefit therefore the entire data  sample. 

5.1. S e l e c t i o n  o f  O u t e r  T racks  

Reconstruction in the outer region is performed first. This procedure is known to 
be unstable at times, because the nearest-neighbour search does not handle local 
correlations of observations with respect to track assignment correctly. Work is in 
progress to provide a detailed discussion of outer tracking errors [25]. 

Track selection operates on the basis of a cut on Equation 2, rejecting tracks whose 
X 2 value is above an absolute threshold. Also, the track is rejected if its region of 
extrapolation does not lie in the region of acceptance of the vertex detector. This is 
true for tracks with their vertex at, or near, the primary vertex, and with an angle 
of incidence X greater than 60 degrees. 
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Figure 5. Distribution of the number of tracks per connected component after preprocesslng (at 
left) versus the original distribution of tracks per e v e n t  

5.2. P r o b l e m  Size  

For a given event, the problem size is essentially determined by the number of 
tracks and their separation. The center of mass energy of the collision determines 
the type of particle produced, which, in turn, determine the number of tracks. At 
the Z ° energy of 92 GeV, one expects to reconstruct a maximum of around thir ty 
tracks per event, with about twenty one tracks in average. The worst case consists 
therefore of the assignment of thirty outer tracks to an equal number of observations 
in the two layers and views of the vertex detector. The corresponding number of 
feasible solutions is in the order of 1012s. 

5.3. C o m p u t a t i o n a l  E x p e r i e n c e  

A performance study of the procedure was performed on real and simulated data  
during the testing phase of the implementation. The application of the logical 
partitioning and clustering steps accounted for a decrease in problem size shown in 
Figure 5, where the histogram of the number of tracks per connected components 
is shown after preprocessing (component) and prior to it (event). The mean of the 
event distribution was about thirty-two (the discrepancy with the expected number 
of targets is due the same particle being counted more than once if it spirals in the 
detector). By comparison, the mean was six for the component distribution. 

One could expect that  the reduction of problem size would come at the expenses 
of an increase in the n~mber of generated subproblems, but  two mutually exclusive 
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Figure 6. Timing plot of a mixed exhaustive search and branch & bound implementation for small 
problems, all phases included. The cut-out point between the two methods is clearly visible at 
0.68 seconds 

outcomes were observed in practice: the number of components in the event was 
either large but  made mostly of diagonal components and included one instance 
of a dense problem, or the event would partit ion into three or less subproblems of 
non-trlvial sizes. The original sample of 1134 Z ° events shown in the figure was 
in fact reduced to 228 components, after removal of diagonal instances, which were 
solved by sequential search. 

As all events, regardless of their size, need to be processed, it seems unwise to 
apply the same treatment  of information to an event with a small number of corre- 
lated observations as to a dense event. For very sman problems, exhaustive search 
for the optimal assignment is not only feasible, and also faster than the initializa- 
tion phase of the branch & bound method. As a practical implementation step, 
we decided to apply exhaustive search to all subproblems with less than 10 5 possi- 
ble combinations, and branch & bound to all others. Figure 6 indicates the CPU 
time per event taken by this hybrid method to solve a sample of a thousand small 
problem instances on a DEC Alpha 3000/300 RISC workstation. The transition 
in compute-time between exhaustive search and branch & bound, and hence the 
compute-time gain obtained in applying the global method, is clearly visible at 105 
combinations (0.68 seconds). 

For larger problems, the fully implemented method took in average four times as 
long as the Kalman-based nearest-neighbour approach. It was observed, however, 
that  calculating the weights accounted for about 90% of the total  CPU time, of 
which 50% was taken by the iterative smoothing step of the Kalman filter. It was 
observed in later simulation studies that  turning off the smoothing step altogether 
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did not change the efficiency in any but a few events. The filtering step was therefore 
bypassed, reducing the CPU overhead of the global approach to about 50 % with 
respect to the original algorithm. 

No more than a thousand variables and 150 constraints were ever observed amongst 
the decomposed instances. The branch & bound algorithm was interfaced with a 
public domain, dual simplex-based linear programming solver (LP_SOLVE, written 
by Michel Berkelaar from the Eindhoven University of Technology [3]). All subcom- 
ponents processed by this algorithm were solved to optimality, and for that phase 
alone, compute time never exceeded two seconds of CPU time on a 76 SPECint 92 
workstation. 

5.4. S imula t ion  Resu l t s  

To evaluate potential tracking improvements, simulated data were processed by the 
existing ALEPH reconstruction code, and by the code developed for implementing 
the global approach. Monte Carlo physics event generators, interfaced with a de- 
tector simulation package, provided the simulation platform. Their implementation 
is discussed in detail in Bonissent [5]. While the generators offer a rather simplistic 
treatment of data reconstruction errors, and may not be used as a base for detailed 
analysis, they are useful to for comparative study of this type. 

The success rate, in terms of the number of hits correctly assigned with respect to 
the known simulated solution, was obtained for both methods over a sample of 3000 
simulated hadronic events. Considering all events regardless of their complexity, 
the mean of the success rate distribution was found to be 87.9% and 92.1% for the 
ALEPH reconstruction code and for the new code respectively. The improvement 
was more evident when considering only the more dense subproblems, selected by 
applying a cut of 0.8 on the node/edge ratio, resulting in the distribution shown 
in Figure 7. In this plot, bin 100 (a 100 % success rate) contains all subproblems 
for which a perfect match with the Monte Carlo solution was found. The difficul- 
ties experienced by the sequential algorithm to handle more complex problem are 
evident in this figure, as not a single problem could be solved to optimality by this 
method. 

This comparison is incomplete without examining the/ai/ure rate of the methods, 
as an observation assigned to the wrong track is more likely to affect the quality 
of the track than an observations which has merely been removed from it. This is 
achieved by considering, in the previous sample, the observations which have been 
assigned to the wrong track by either method, with respect to the Monte Carlo 
solution, as shown in Figure 8. The combinatorial method is still only slightly 
better than the sequential assignment. The means of the distributions were 8.3% 
vs. 6.2% for the two methods respectively. However, considering the results shown 
in the last two figures, the goal of obtaining a systematic improvement over the 
sequential method has been achieved. 
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Figure 9. Impact parameter/error distributions for I0'000 hadronlc Z ° events (60'000 tracks), 
obta ined  with sequential  code (JULIA) and  combinatorial  method.  The b ranch  & b o u n d  me thod  
described in this paper  produces a sharper  peak about  the  impact  pa ramete r  value (bin zero) and  
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5.5. P h y s i c s  A n a l y s i s  w i t h  I m p r o v e d  A s s i g n m e n t  

It  should be noted that  the simulation results described earlier clearly reveal tha t  
both methods were prone to errors. As it is difficult to isolate the source of these 
errors as coming from the poor performance of pat tern recognition algorithms in 
the outer tracking, modehng flaws, or simply Monte Carlo errors, this simuIation 
study was not sufficient in itself to justify the usefulness of our tracking approach. 
To do so, we considered next a comparison of tracking quality over a large sample 
of veal data, by solving the so-called "hadron tagging" problem. This consists of 
identifying in an event the decay signature of a particle which contains a b-quark 
through the reconstruction of the impact parameter of its track, defined as the 
distance of closest approach between the track and the primary vertex. This result 
has applications in heavy flavour physics analysis, and is fully described in Brown 
[6]. 

The probability that  a measured impact parameter is consistent with a hypothesis 
(e.g., that  it comes from the primary vertex) is computed using a resolution function 
which is measured directly from the data, and which provides a direct measure of 
tracking quality in the vertex detector. 

Figure 9 shows the resolution histogram of the impact parameter divided by its er- 
ror for 10'000 Z ° events for both the sequential (JULIA) and branch & bound based 
methods. The peak of this distribution represents an error-free pat tern recognition, 
while the tail area reveal a poor resolution of the pat tern recognition algorithm. 
The log scale used for this histogram tends to amplify the measurement errors, but  
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also reveals that  the method presented in this paper  is also performing consistently 
bet ter  over real da ta  than sequential pa t tern  recognition. 

6. Concluding Remarks 

The goal of this paper was to show that the data association problem associated with 
the High Energy Physics tracking problem lends itself well to a hybrid treatment 
by sequential and global pattern recognition methods. What ultimately determines 
which method is best is the local degree of correlation of observations with respect to 
a track formation hypothesis. The vertex detector region in the ALEPH experiment 
is clearly a region of high correlation, and the combinatorial method proposed 
here was successfully implemented in its context to provide consistent tracking 
improvements. 
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A p p e n d i x  

The track propagator  of the state vector Fk at a radius rk+l = r~ + A r  is given by 
[I0]: 
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